Mast cell degranulation: A target for bioactive natural products

S.A. Nirmal1*, A.M. Vaykole1, G.B. Khadse2, S.C. Pal3, S.C. Mandal4

1Department of Pharmacognosy, Pravara Rural College of Pharmacy, Pravaranagar, M.S., India.
2Department of Pharmacognosy, Shivairao Jondhle College, Asangaon, Thane, M.S., India.
3Department of Pharmacognosy, NDMVP’s College of Pharmacy, Nasik, M.S., India.
4Pharmacognosy and Phytotherapy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.

*Corresponding author: nirmalsunil@rediffmail.com

Received: 14 September 2012, Revised: 4 March 2013, Accepted: 7 March 2013

Abstract

Mast cells are well known for their involvement in allergic, anaphylactic reactions and variety of inflammatory diseases. Many plants show anti-allergic activity by inhibiting histamine release from mast cells. Degranulation of mast cells can be prevented by various mechanisms. As histamine is one of the important mediators for asthma, plant extracts that could prevent degranulation of mast cells may be effective in the treatment of asthma. Extract that can stabilize mast cells can inhibit mast cell-derived allergic inflammation by inhibiting release of phorbol 12-myristate 13-acetate (PMA), TNF-α, IL-6, IL-8 and related mediators of inflammation. Therefore, natural products that could prevent degranulation of mast cells can be effective in the treatment inflammatory diseases, such as asthma, atopic dermatitis, and allergic inflammation.

Keywords: Mast cell, allergic inflammation, inflammatory diseases, asthma, plant extracts.

Introduction

Mast cells are cells found throughout the body as part of our immune system. Mast cells appear to induce a rapid inflammatory response to outside invaders, such as germs and viruses. Mast cells play a large role in allergic responses, as they release the chemical known as histamine. For the majority of this time their function was linked almost exclusively to allergy and allergic disease with few other roles in health and disease. Mast cells play critical roles in both innate and adaptive immunity, including immune tolerance. MCs can aid in maintaining a healthy physiology by secreting mediators that promote wound healing and homoeostasis as well as interacting with neurons. Major developments have been made in understanding MC function in defense against pathogens, in recognition of pathogens as well as direct effector functions.
Mechanisms of mast cell degranulation

Mast cells play a central role in adaptive and innate immune responses. IgE antigen stimulation of the high-affinity IgE receptor (FcεRI) results in rapid secretion of various granule-stored mediators responsible for allergies and other inflammatory diseases. This degranulation process depends on an increase in intracellular Ca^{2+} concentrations. Calcium needed for degranulation comes from intracellular stores and from Ca^{2+} influx from the extracellular medium through plasma membrane channels. The release of Ca^{2+} is mediated by the PLCγ signaling pathway (Galli et al., 2005) (Figure 1).

IgE-antigen complexes bind the high-affinity FcεRI receptors, activating the Lyn-Btk-PLCγ cascade. Inositol triphosphate (InsP3) is synthesized, binds the InsP3R, and causes the release of Ca^{2+} from the ER through ryanodine receptors (RyR), followed by SOCE mediated by STIM-ORAI channels.

Release of Histamine from mast cells

Mast cells release histamine during inflammatory or allergic reactions. When exposed to allergens, humans produce IgE antibodies that are directed against the allergen. Mast cells have receptors that can bind to the Fc region of IgE antibodies. Binding of monomeric IgE to the Fc receptor does not cause mast cell activation and degranulation; initial exposure to an allergen causes large numbers of IgE antibodies to attach to mast cells surfaces without
activating them (Metcalfe et al., 1997). Upon second exposure to an allergen, the IgE molecules bound to the mast cell surface can bind to allergen. The allergen causes crosslinking of the IgE molecules on the cell surface, which clusters the Fc receptors. This clustering stimulates a signal transduction that causes the mast cell to ‘degranulate’, or dump their granules into the tissues (Sompayrac, 1999). Important step in mast cell activation appears to be the crosslinking of IgE molecules, which causes the clustering of Fc receptors. This step also appears necessary because the bridging of receptors forms hydrophilic channels that allow calcium levels to increase intracellularly, which triggers mediator release. It has also been established that IgE acts as an anchor for antigen and helps to amplify the transduction signal generated by the bridging due to antigen-binding (Froese, 1980) (Figure 2).

Mast cells detain histamine in intracellular granules. Binding of IgE to cell surface receptors on a mast cell primes the cell to respond to allergen. Introduction of allergen and its subsequent binding to IgE induces crosslinking of IgE and clustering of Fc receptors. Clustering initiates a signal transduction event that stimulates the mast cell to degranulate, or release the contents of its granules. Mediators, such as histamine, which is represented by the tan circle, are released from granules and can bind to specific receptors to carry out their actions.

Bioassays for measurement of mast cell degranulation

Exocytosis Stimulation Protocol

Maintain MC-9 cells at the density of 5 x 10^6 cells/ml. Treat the cells with dimethyl sulfoxide (DMSO) or ionophore at 37°C. dimethyl sulfoxide (DMSO) or ionophore for different times at 37°C. Collect the cells for enzymatic analysis and then process for flow cytometry. Stimulate RBL-2H3 cells by washing the cells once in MT and then adding MT (1 ml/10^6 cells) containing the stimulus. Incubate the cells at 37°C for 30 min, and the supernatant was harvested for further analysis. Stain the plate-bound cells with annexin-V and then remove from the flask using No-Zyme containing 3 mM CaCl₂ for further processing for flow cytometry. For stimulation of RBL-2H3 cells with antigen crosslinking, the cells are incubated for 2 h at 37°C with IgE anti-DNP in complete media at different concentrations. Take up the cells processed for stimulation and staining in MT on ice and filter through a 100-μm filter prior to cytometry. Analyze it with a suitable cytometer (Demo et al., 1999).
Table 1. Various plants useful for mast cell stabilization along with their active extract or isolated compounds and mechanism of action.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Action / Mechanism</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecythis pisonis Camb. (Lecythidaceae)</td>
<td>The compound 48/80-elicited degranulation of rat peritoneal mast cells was markedly reduced in animals pretreated with ethanol extract of leaves.</td>
<td>Silva et al., 2012</td>
</tr>
<tr>
<td>Myrica nagi Hook. (Myricaceae)</td>
<td>Ethyl acetate and aqueous extracts of bark showed better protection of mast cell degranulation in egg albumin induced degranulation of mast cells in rats. Phytochemical screening revealed the presence of flavonoids and steroids.</td>
<td>Patel et al., 2011</td>
</tr>
<tr>
<td>Matricaria recutita L.</td>
<td>The methanol extract showed significant dose dependent anti-pruritis property by inhibiting the mast cell degranulation this suggest its anti-allergic activity by inhibition of histamine release from mast cells.</td>
<td>Chandrashekhar et al., 2011</td>
</tr>
<tr>
<td>Elsiholtzia ciliata (Thunb.) Hyland (Labiatae)</td>
<td>Water extract inhibits mast cell-mediated allergic inflammatory reactions by suppressing histamine release.</td>
<td>Kim et al., 2011</td>
</tr>
<tr>
<td>Glycyrrhiza glabra with Solanum xanthocarpum and Adhatoda vasica</td>
<td>Pretreatment of mast cell with Liquorice Extract, S. xanthocarpum Extract and A. vasica Extract showed significant protection against Compound 48/80 and egg albumin induced degranulation. The hydroalcoholic extract significantly inhibited the compound 48/80 induced mast cells degranulation in a dose dependent manner.</td>
<td>Manek et al., 2011</td>
</tr>
<tr>
<td>Barleria prionitis</td>
<td>The hydroalcoholic extract significantly inhibited the compound 48/80 induced mast cells degranulation in a dose dependent manner.</td>
<td>Mali et al., 2011</td>
</tr>
<tr>
<td>Marmin or (7-(6',7'-dihydroxygeranyl-oxy)coumarin active compound isolated from Aegle marmelos Correa.</td>
<td>The inhibitory effect of marmin on the histamine release from mast cells depends on the type of mast cell and also involves mechanisms related to intracellular Ca²⁺ signaling events by blocking Ca²⁺ influx into mast cells.</td>
<td>Nugroho et al., 2011</td>
</tr>
<tr>
<td>Bauhinia variegata (Caesalpiniaceae)</td>
<td>Ethanol extracts of stem bark possessed potent mast cell stabilizing activity, suggesting potential for use in the treatment of asthma.</td>
<td>Mali and Dhake, 2011</td>
</tr>
<tr>
<td>Strychnos potatorum Linn</td>
<td>Chloroform, petroleum ether, and methanolic extracts of seed were shown potent inhibitory effects on compound 48/80 induced anaphylactic reaction and mast cell activation.</td>
<td>Patil et al., 2011</td>
</tr>
<tr>
<td>Cordia verbenacea</td>
<td>Ethanol extract of leaves (30 μg/ml) reduced the in vitro secretion of histamine from rat mast cells induced by ionophore A23187, concanavalin A and compound 48/80</td>
<td>Costa et al., 2011</td>
</tr>
<tr>
<td>Calotropis gigantea (Linn.) R.Br. (Asclepiadaceae)</td>
<td>Methanolic extract of root showed significant percentage protection in compound 48/80 induced mast cell degranulation in rats.</td>
<td>Bulani et al., 2011</td>
</tr>
<tr>
<td>Lindera obtusiloba</td>
<td>Water extract reduced histamine release from various types of mast cells activated by immunoglobulin E (IgE) or phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI). Inhibitory effect was mediated by calcium signal.</td>
<td>Suh et al., 2011</td>
</tr>
<tr>
<td>Taxus baccata Linn.</td>
<td>Alcoholic extract of leaves dose dependently protected the mast cell disruption induced by compound 48/80.</td>
<td>Patel et al., 2011</td>
</tr>
<tr>
<td>Baliospermum montanum Mill. Arg. (Euphorbiaceae)</td>
<td>Ethanol extract of leaves was found to be effective against degranulation and release of histamine from mast cells.</td>
<td>Venkatesh et al., 2010</td>
</tr>
<tr>
<td>Thespesia populnea</td>
<td>Significant reduction of % mast cell degranulation was observed at 60 mg/ml dose of ethanolic extract of bark.</td>
<td>Patel et al., 2010</td>
</tr>
<tr>
<td>Solanum xanthocarpum Schrad. (Solanaceae)</td>
<td>Ethanol extract of leaves protected mast cells from compound 48/80-provoked degranulation.</td>
<td>Parmar et al., 2010</td>
</tr>
<tr>
<td>Prunus persica (L) Batsch</td>
<td>Histamine releasing from mast cells was reduced by ethanol extract of fruits, which was mediated by modulation of intracellular calcium. Extract attenuated the phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-stimulated expression and secretion of pro-inflammatory cytokines in human mast cells.</td>
<td>Shin et al., 2010</td>
</tr>
<tr>
<td>Herb</td>
<td>Effect</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Chinese propolis</td>
<td>This inhibitory effect of extract on pro-inflammatory cytokines was nuclear factor (NF)-κB dependent. This provide evidence that extract inhibits mast cell-derived allergic inflammation.</td>
<td>Nakamura et al., 2010</td>
</tr>
<tr>
<td>Gleditsia Spina (WGS) (Leguminosae) Nelumbo nucifera</td>
<td>The ethanol extract is the strongest inhibitor of mast cell degranulation which contains chrysin, kaempferol and its derivative.</td>
<td>Shin, 2010</td>
</tr>
<tr>
<td>Rhododendron anthopogonoides</td>
<td>Water extracted reduced histamine release from HMC-1 cells.</td>
<td>Mukherjee et al., 2010</td>
</tr>
<tr>
<td>Paonia suffruticosa Andrews Ulmus davidiana var. japonica</td>
<td>Rhizome extract protected mast cells from degranulation against compound 48/80.</td>
<td>Iwata and Kitanaka, 2010</td>
</tr>
<tr>
<td>Vitex nigundo Linn.</td>
<td>Alcoholic extract of leaves dose dependently protected the mast cell disruption induced by compound 48/80.</td>
<td>Patel et al., 2010</td>
</tr>
<tr>
<td>S. baicalensis and P. edulis</td>
<td>Combined standardized herb composition of S. baicalensis and P. edulis reduce degranulation during mast cell activation and could be a promising candidate for the treatment of immune/allergic diseases related to mast cells.</td>
<td>Kim et al., 2010</td>
</tr>
<tr>
<td>Butea monosperma</td>
<td>Butrin, isobutrin, and butein isolated from B. monosperma flower extract significantly reduced the phorbol 12-myristate 13-acetate and calcium ionophore A23187-induced inflammatory gene expression and production of TNF-α, IL-6, and IL-8 in HMC-1 cells by inhibiting the activation of NF-κB. This indicates potential therapeutic value for the treatment of inflammatory and other diseases in which activated mast cells play a role.</td>
<td>Rasheed et al., 2010</td>
</tr>
<tr>
<td>Zanthoxylum piperitum DC</td>
<td>Isolated glycoprotein from fruit inhibited interleukin-4, immunoglobulin E, and histamine are released in mouse serum. Also, it attenuated the degranulation of mast cells, intracellular Ca^{2+} levels, and the activities of phosphorylation of p^{38} mitogen-activated protein kinase, nuclear factor-κB (p^{50} and p^{65}), and cyclooxygenase-2 in the HMC-1 cells. The glycoprotein can prevent dysfunction in the immune system caused by several different allergens.</td>
<td>Lee and Lim, 2010</td>
</tr>
<tr>
<td>Clinopodium gracile Matsum var. multicaule*</td>
<td>The water extract dose-dependently reduced histamine release from rat peritoneal mast cells and human mast cells. In addition, it attenuated the phorbol 12-myristate 13-acetate and calcium ionophore A23187-stimulated gene expression and secretion of proinflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in human mast cells. WECG inhibits mast cell-derived allergic inflammation through involvement of calcium and NF-κB in these effects.</td>
<td>Park et al., 2010</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>Extract has significant rat peritoneal mast cells stabilization activity induced by compound 48/80. 7-oxosandaracopimric acid isolated from the ether fraction of Aralia cordata methanol root extract significantly inhibited compound 48/80-induced histamine release from rat mast cells. Extract inhibited histamine release from rat peritoneal mast cells in a dose-dependent manner. In activated HMC-1 cells, the expression level of NF-kappaB/Rel A protein increased in the nucleus, whereas the level of NF-kappaB/Rel A in the nucleus was decreased by extract treatment. In conclusion, the extract has potent anti-anaphylactic and anti-inflammatory properties.</td>
<td>Savali et al., 2010</td>
</tr>
<tr>
<td>Aralia cordata</td>
<td>Chloroform extract showed mast cell membrane stabilization activity in compound 48/80 induced mast cell activation. The extract possess potent antiallergic activity, possibly through mast cell membrane stabilization.</td>
<td>Kim et al., 2010</td>
</tr>
<tr>
<td>Ailanthus altissima swingle</td>
<td>Extract of rhizomes stabilized the mast cell degranulation.</td>
<td>Kang et al., 2010</td>
</tr>
<tr>
<td>Aristolochia bracteolata</td>
<td>Chloroform extract showed mast cell membrane stabilization activity in compound 48/80 induced mast cell activation. The extract possess potent antiallergic activity, possibly through mast cell membrane stabilization.</td>
<td>Chitme et al., 2010</td>
</tr>
<tr>
<td>Curculigo orchioides</td>
<td>Extract of rhizomes stabilized the mast cell degranulation.</td>
<td>Venkatesh et al., 2009</td>
</tr>
</tbody>
</table>
Gaertn. (Fam. Amaryllidaceae)

Eriobotrya japonica Lindl. (Rosaceae)

Extract of leaves dose-dependently decreased histamine release from mast cells. Furthermore, it decreased the production of tumor necrosis factor-α in phorbol 12-myristate 13-acetate and A23187-stimulated human mast cells. Thus it can be used as an anti-allergic agent.

Kim et al., 2009

Tinospora cordifolia (Willd.) Miers (Menispermaceae)

Aqueous extract of stem significantly inhibited the histamine release from rat peritoneal mast cells activated by compound 48/80. It also significantly inhibited the secretion of tumor necrosis factor-α (TNF-α) in antidinitrophenyl (DNP) IgE-stimulated rat peritoneal mast cells. Thus it may be beneficial in the treatment of acute and chronic allergic disorders.

Zalawadia et al., 2009

Centella asiatica

Extract significantly inhibited the histamine release from rat peritoneal mast cells activated by compound 48/80.

George et al., 2009

Pithecellobium clypearia Benth

Polyphenols from ethanol extract (-)-epigallocatechin-7-gallate, (-)-5, 7, 3', 4', 5'-pentahydroxyflavan and (-)-teta hydroxyflavan-7-gallate showed significant inhibition effect on histamine release from rat peritoneal mast cells in vitro stimulated by compound 48/80.

Bao et al., 2009

Rubus coreanus Miq. (Rosaceae)

Extract of ripe fruits decreased the gene expression and production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187 (A23187)-stimulated human mast cells. Thus it could be a candidate as an anti-allergic agent.

Shin, 2009

Urtica dioica

Extract causes inhibition of mast cell tryptase preventing degranulation and release of a host of pro-inflammatory mediators that cause the symptoms of hay fevers.

Roschek Jr. et al., 2009

Allium cepa (Liliaceae)

An herbal fraction (ALC-02) from (bulb) inhibited histamine release and attenuated intracellular calcium levels in Compound 48/80-induced rat peritoneal mast cells.

Kaiser et al., 2009

Sphaeranthus indicus

Ethanol and ethyl acetate extracts showed better protection of mast cell degranulation against compound 48/80 and sheep serum induced mast cell degranulation.

Mathew et al., 2009

Sophora flavescens Aiton

Extract of dried roots inhibited the mast cell-mediated passive cutaneous anaphylaxis reaction in vivo and the release of histamine from rat peritoneal mast cells by compound 48/80. In addition, the expression levels of phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-α, IL-6, and IL-8 were also decreased. Thus it could be used as a treatment for mast cell-derived allergic inflammatory diseases.

Hong et al., 2009

Teucrium japonicum Houttuyn (Labiatae)

Aqueous extract reduced histamine release and intracellular calcium from rat peritoneal mast cells activated by compound 48/80. In addition, extract attenuated activation of nuclear factor (NF)-κB, and downstream tumor necrosis factor (TNF)-α expression in phorbol 12-myristate 13-acetate and calcium ionophore A23187-stimulated human mast cells.

Kim et al., 2009

Natsudaidain, a polymethoxyflavone isolated from Citrus plants

Natsudaidain hardly affects histamine release from RBL-2H3 cells, except at high concentrations.

Matsui et al., 2009

Vitex negundo

Ethyl acetate, ethanolic and aqueous extracts of leaves showed significant protection of rat mesenteric mast cells from disruption caused by compound 48/80.

Patel et al., 2009

Schinus terebinthifolius (Anacardiaceae)

Ethyl acetate fraction preventing mast cell degranulation and, consequently, histamine release in Wistar rat peritoneal mast cells induced by C 48/80. This histamine inhibition was also observed after mast cell pre-treatment with both methyl gallate and 1,2,3,4,6-pentagalloylgucose, the isolated compounds from the ethyl acetate fraction.

Cavalher-Machado et al., 2008

PentaHerbs formula (PHF) containing Cortex Moutan, root

PHF, Cortex Moutan and Herba Menthae significantly attenuated histamine release and prostaglandin D2 synthesis from RPMC activated by anti-IgE and compound 48/80. Flos Lonicerae and
bark of *Paeonia suffruticosa* Andr. (Ranunculaceae),
Cortex Phellodendri, bark of *Phellodendron chinensis* Schneid. (Rutaceae),
Flos *Lonicerae*, flower of *Lonicera japonica* Thunb. (Caprifoliaceae),
Herba Menthae, aerial part of *Mentha haplocalyx* Briq. (Labiatae) and
Rhizoma *Atractylodis*, rhizome of *Atractylodes lancea* (Thunb.) DC.

Rhizoma *Atractylodis* suppressed only mediator release from compound 48/80 activated RPMC.

Piper nigrum
Methanolic extract of leaf exhibited in vitro inhibitory effect on compound 48/80-induced histamine release from rat peritoneal mast cells. Two lignans of extract, (-)-cubebin and (-)-3,4-dimethoxy-3,4-desmethylenedioxyceubenin, were identified as major active principles having histamine release inhibitory activity.

Hirata et al., 2008

Mosla dianthera (M. dianthera)
Aqueous extract attenuated histamine release from mast cells and decreased the gene expression and production of tumor necrosis factor (TNF)-α in phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated human mast cells. It could be an antiallergic agent.

Kim et al., 2008

Albizia lebbeck
Methanolic extract of leaf and methanolic and water extracts of bark showed in vitro mast cell stabilizing effect against compound 48/80.

Shashidhara et al., 2008

Rubus suavissimus S. Lee
Extract inhibited the release of histamine in rat peritoneal mast in vitro, a dose-dependent manner. Thus it exerts potential anti-allergy effect may be partly related to its inhibitory effect on the release of histamine from mast cells. 70% ethanol extract was effective in antagonizing certain pharmacological effects induced by compound 48/80 that occurred via both histamine and serotonin released from mast cells. Thus it may be effective in the relief of symptoms of allergic atopic dermatitis and other allergy-related diseases.

Fang et al., 2008

Dictamnus dasycarpus Turcz
70% ethanol extract was effective in antagonizing certain pharmacological effects induced by compound 48/80 that occurred via both histamine and serotonin released from mast cells. Thus it may be effective in the relief of symptoms of allergic atopic dermatitis and other allergy-related diseases.

Jiang et al., 2008

Selinidin, one of the coumarin derivatives isolated from *Angelica keiskei*
Selinidin attenuates the release of β-hexosaminidase, synthesis of leukotriene C4, and production of tumor necrosis factor-α without affecting IgE-FceRI binding. Furthermore, biochemical analyses of the FceRI-mediated signaling pathway demonstrated that selinidin decreases phosphorylation of phospholipase C-γ1, p38 mitogen-activated protein kinase, and IκB-α upon FceRI stimulation. These results suggest that this compound suppresses IgE-mediated mast cell activation by inhibiting multiple steps of FceRI-dependent signaling pathways and would be beneficial for the prevention of allergic inflammation.

Kishiro et al., 2008

Phlomis umbrosa Turcz. (Labiatae)
Aqueous extract of root dose-dependently inhibited the histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Extract inhibited the secretion of interleukin (IL)-1β in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated human mast cell line (HMC-1) cells. Extract inhibited the gene expression and production of the main inflammatory cytokine, TNF-α, in HMC-1 cells. These results provide evidence that extract may be beneficial in the treatment of allergic diseases.

Shin et al., 2008

Vitis amurensis Rupr. (Vitaceae)
Methanol extract of fruits dose-dependently reduced histamine release from mast cells activated by compound 48/80 or IgE. The inhibitory effect of extract on histamine release was mediated by

Kim et al., 2008
the modulation of intracellular calcium. In addition, extract attenuated the phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-stimulated secretion of tumor necrosis factor-α, interleukin-6 (IL-6), and IL-8 in human mast cells. The inhibitory effect of extract on these proinflammatory cytokines was p38 mitogen-activated protein kinase and nuclear factor-κB (NF-κB) dependent. Our findings provide evidence that extract inhibits mast cell-derived immediate-type allergic reactions.

Salvia miltiorrhiza

Mast cell degranulation is blunted by cryptotanshinone and 15,16-dihydrotanshinone I isolated from root extract. Han et al., 2008

Angelicae dahuricae

Isoimperatorin (4-[(3-Methyl-2-butenyl)oxy]-7H-furo[3,2-g][1]benzopyran-7-one) isolated from roots inhibit the cyclooxygenase-2 (COX-2) and COX-1-dependent phases of prostaglandin D2 (PGD2) generation in bone marrow-derived mast cells (BMMC) in a concentration-dependent manner therefore may provide the basis for novel anti-inflammatory drugs. Moon et al., 2008

Lithospermi radix

Root extract inhibited the release of histamine from rat peritoneal mast cells by compound 48/80 in a dose-dependent manner. Extract inhibited the PMA plus A23187-induced increase in IL-6, IL-8, and TNF-α expression in HMC-1 cells. These results show that extract had an inhibitory effect on the atopic allergic reaction. Kim et al., 2007

Amomum xanthiodes

Aqueous extract reduced histamine release and intracellular calcium from rat peritoneal mast cells activated by compound 48/80. Furthermore, it decreased the activation of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase and c-jun N-terminal kinase, and downstream tumor necrosis factor (TNF)-α production in phorbol 12-myristate 13-acetate and calcium ionophore A23187-stimulated human mast cells. It can be concluded that extract inhibits mast cell-derived allergic reactions, and that intracellular calcium, TNF-α, and p38 MAPK are involved in these effects. Kim et al., 2007

Moringa oleifera

Ethanolic extract of seeds decreases the mast cell-mediated immediate type hypersensitivity reaction. When extract was given as pretreatment, the histamine release from the mast cells that was induced by the 48/80 was reduced in a dose-dependent manner. These results suggest a potential role for extract as a source of anti-anaphylactic agents for use in allergic disorders. Mahajan and Mehta, 2007

Glycine max

Extract decreased the phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated tumor necrosis factor (TNF)-α and interleukin (IL)-8 secretion in human mast cells. It indicates that extract may be beneficial in the treatment of mast cell-mediated immediate-type allergic reactions. Shin et al., 2007

Moutan cortex

Ethanol extract inhibited histamine release from rat peritoneal mast cells induced by compound 48/80. In conclusion, it may be useful for the relief of symptoms of atopic dermatitis and other allergy-related diseases. Jiang et al., 2007

Forsythia koreana

Methanol extract inhibited histamine release from the RPMCs by and TNF-α, IL-6, and IL-8 production from HMC-1 cells. Choi et al., 2007

Prunella vulgaris

Aqueous extract attenuated phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-α, IL-6, and IL-8 secretion in human mast cells. Thus extract inhibits mast cell-derived immediate-type allergic reactions. Kim et al., 2007

Tridex procombens

Flavone glucoside 5,3',4'-trihydroxy-7,5'-dimethoxy-5-O-α-L-methyl pyranoside inhibited histamine release from mast cells. Nagina et al., 2007

Schizandra chinensis

Schizandrin isolated from fruit also inhibited the in vitro degranulation of compound 48/80-induced rat peritoneal mast cells and IgE-induced RBL 2H3 cells. Schizandrin reduced the protein expressions of TNF-α and IL-4 in IgE-induced RBL 2H3 cells. Lee et al., 2007

Meliae cortex

Ethanol extract inhibited the expression of the proinflammatory mediator TNF-α through suppressing the activating phosphorylation of Syk, a key enzyme in mast-cell signaling. Lee et al., 2007
processes and that of Akt in a dose-dependent manner. It also inhibited the MAP kinase ERK1/2, which is critical for the production of inflammatory cytokines in mast cells, as indicated by the suppression of the activating phosphorylation of ERK1/2. Taken together, these results suggest that the anti-allergic activity of extract may be due to the inhibition of histamine secretion and cytokine expression through the Syk inhibition in mast cells.

Bidens parviflora

Compounds guaiacyl glycerol 8-O-β-D-glucoside, syringin, 4-allyl-2-methoxyphenol-O-6-O-β-D-apiofuranosyl)-β-D-glucoside, and 5, 7-dihydroxy chromone 7-O-β-D-glucoside isolated from plant extract exhibit the activities of anti-histamine release from rat mast cell stimulated by antigen-antibody reaction. Wang et al., 2007

Glycyrrhiza glabra L., Leguminosae

Liquiritigenin and 18β-glycyrrhetinic acid isolated from plant extract most potently inhibited the degranulation of rat peritoneal mast cells induced by compound 48/80. Shin et al., 2007

Syzygium cumini (L.) Skeels (Myrtaceae)

Aqueous leaf extract prevented mast cell degranulation and the consequent histamine release in Wistar rat peritoneal mast cells induced by compound 48/80 indicating its anti-edematogenic effect. Brito et al., 2007

Mosla dianthera (Maxim.)

Aqueous extract attenuated intracellular calcium level and release of histamine from rat peritoneal mast cells activated by compound 48/80. Furthermore, it attenuated the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-α, IL-8 and IL-6 secretion in human mast cells. Thus it inhibits mast cell-derived immediate-type allergic reactions. Lee et al., 2006

Artemisia iwayomogi

Extract dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, it attenuated the phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated tumor necrosis factor-α and interleukin-6 secretion in human mast cells. Thus it may be beneficial in the treatment of allergic diseases. Shin et al., 2006

Rubus coreanus Miq. (Rosaceae)

Extract of unripe fruits reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or IgE. Furthermore, it decreased the phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated tumor necrosis factor (TNF)-α and interleukin (IL)-6 secretion in human mast cells. Thus it may inhibits mast cell-derived immediate-type allergic reactions. Shin et al., 2006

Agaricus blazei

Water extract dose-dependently inhibited compound 48/80-induced or anti-DNP IgE-mediated histamine release from rat peritoneal mast cells. Choi et al., 2006

Japanese butterbur

Aqueous ethanol extract from aerial parts inhibited mast cell degranulation by inhibition of β-hexosaminidase release. Shimoda et al., 2006

Rubiae Radix

Extract suppresses the activation of mast cells through the inhibition of Syk for anti-allergic activity. Lee et al., 2006

Euphorbia hirta

95% Ethanol extract from whole aerial parts inhibited rat peritoneal mast cell degranulation triggered by compound 48/80. Singh et al., 2006

Draccephalum argunense FISCH. (Labiateae)

Aqueous extract of dose-dependently reduced IgE-induced histamine release from mast cells. The level of cAMP was transiently increased by treatment of extract. Extract specifically blocked the phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-induced p38 mitogen-activated protein kinase (MAPK) activation. Extract decreased the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6 in mast cells. Kim et al., 2006

Mangifera indica L.

Extract and mangiferin, the major compound isolated from extract had an effect on an in-vivo model of inflammatory allergy mediated by mast cells. García Rivera et al., 2006

Saururus chinensis

Ethanol extract inhibited rat peritoneal mast cell degranulation. Lee et al., 2006

Dracocephalum

Aqueous extract dose-dependently reduced histamine release from Kim and Shin, 2006
argunense Fisch. (Labiatae) | mast cells activated by compound 48/80 or IgE. The inhibitory effect of extract on histamine release was mediated by the modulation of intracellular calcium. In addition, extract decreased TNF-α and IL-6 gene expression and production in human mast cells stimulated by phorbol-12-myristate-13-acetate (PMA) plus calcium ionophore A23187.

Lycopus lucidus Turcz. (Labiatae) | Aqueous extract dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, it decreased the secretion of TNF-α and IL-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells. Thus it inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines, p38 MAPK, and NF-κB in these effects.

Selaginella tamariscina | Water extract reduced the compound 48/80-induced mast cell degranulation and colchicine-induced deformation of rat peritoneal mast cells. Moreover, HCWE dose-dependently inhibited histamine release and calcium uptake of RPMC induced by compound 48/80 or anti-DNP IgE. Extract increased the level of intracellular cAMP and inhibited significantly the compound 48/80-induced cAMP reduction in RPMC. Thus extract may be beneficial in the treatment of mast cell-mediated anaphylactic responses.

Houttuynia cordata | Hot-water extract from the root bark dose-dependently inhibited mast cell degranulation, histamine release and calcium uptake into RPMC induced by the compound 48/80 or anti-CGG IgE. When extract was added, the level of intracellular cAMP in RPMC showed a transient and significant increase (5-fold) compared with that of control cells. Extract also inhibited significantly the compound 48/80-induced cAMP reduction in RPMC. These results suggested that extract inhibits the compound 48/80- or anti-CGG IgE-induced mast cell activation and its inhibitory effects on mast cell activations were favorably comparable to disodium cromoglycate. And extract is a candidate for effective therapeutic tools of allergic diseases.

Amomum xanthiodes (Zingiberaceae) | Extract dose-dependently attenuated the release of histamine from rat peritoneal mast cells (RPMC) activated by compound 48/80 or IgE. Extract increased the cAMP levels and decreased the compound 48/80-induced intracellular Ca²⁺. Furthermore, it attenuated the phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore (A23187)-stimulated tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 secretion in human mast cells. Thus it inhibits mast cell-derived immediate-type allergic reactions, and that cAMP, intracellular Ca²⁺, proinflammatory cytokines, and NF-κB are involved in these effects.

Siraitia grosvenori Swingle | Both the extract and glycoside isolated from the extract inhibited the histamine release induced by compound 48/80. Extract significantly inhibited compound 48/80-induced histamine and β-hexosaminidase release from rat peritoneal mast cells. It inhibited interleukin (IL)-8 and tumor necrosis factor (TNF-α) release induced by phorbol 12-myristate 13-acetate and A23187 from HMC-1 this may be useful in the treatment of allergic inflammatory diseases, such as atopic dermatitis.

Artemisia iwayomogi (Compositae) | Extract dose dependently attenuated histamine release from rat peritoneal mast cells activated by compound 48/80 or IgE. It decreased the compound 48/80-induced intracellular Ca²⁺. Furthermore, it decreased the phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated tumor necrosis factor-α and interleukin-6 gene expression and production in...
<table>
<thead>
<tr>
<th>Source</th>
<th>Extract properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clove and Magnoliae Flos</td>
<td>It is depicted that the survival of animals even after administration of the fatal dose of compound 48/80 might result from the decreased number of mast cells by eugenol pretreatment isolated from volatile oil. Eugenol induces apoptosis in mast cells via translocation of phospho-ser 15-p53 into mitochondria.</td>
</tr>
<tr>
<td>Chrysanthemi sibirici</td>
<td>Ethanol extract exerted the potent inhibitory activity on antigen-induced degranulation in RBL-2H3 mast cells. It dose-dependently inhibited DNP-BSA or compound 48/80-induced degranulation in RBL-2H3 mast cells. It also inhibited the expression of TNF-α and the activation of the MAP kinase, ERK1/2, which is critical for the production of inflammatory cytokines in mast cells, as indicated by the suppression of activating phosphorylation of ERK1/2. Thus it may be used clinically to treat various allergic diseases.</td>
</tr>
<tr>
<td>Park et al., 2005</td>
<td></td>
</tr>
<tr>
<td>Schizonepeta gardneri</td>
<td>Aqueous extract dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. Moreover, it inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells (HMC-1 cells). Thus it may be beneficial in the treatment of acute and chronic allergic diseases.</td>
</tr>
<tr>
<td>Shin et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Stachys riederi var. japonica Miq. (Labiatae)</td>
<td>Aqueous extract dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. Moreover, it inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells (HMC-1 cells). Thus it may be beneficial in the treatment of acute and chronic allergic diseases.</td>
</tr>
<tr>
<td>Shin, 2004</td>
<td></td>
</tr>
<tr>
<td>Isodon japonicus Hara (Labiatae)</td>
<td>Extract dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, it decreased the production of TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated human mast cells. Thus it inhibits mast cell derived immediate-type allergic reactions.</td>
</tr>
<tr>
<td>Shin et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Rubus croceacanthus Leveille</td>
<td>When methanol extract was given as pre-treatment, the histamine release from rat peritoneal mast cells induced by compound 48/80 or antinitrophenyl (DNP) immunoglobulin E (IgE) was reduced in a dose-dependent manner. In addition, it inhibited phosphol 12-myristate 13-acetate and A23187-induced tumor necrosis factor-α secretion from human mast cell line HMC-1 cells. Thus it may possess a strong anti-anaphylactic activity.</td>
</tr>
<tr>
<td>Moon et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Cissus sicyoides L. (Bejuco caro)</td>
<td>Methanolic extract of Bejuco and its isolated constituent hydroxystilbene resveratrol showed inhibition in histamine release from rat peritoneal mast cells.</td>
</tr>
<tr>
<td>Quilez et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Protium heptaphyllum</td>
<td>The compound 48/80-elicited degranulation of rat peritoneal mast cells (ex vivo) was also markedly reduced in animals pretreated with α,β-aminys, the pentacyclic triterpenes isolated from the resin.</td>
</tr>
<tr>
<td>Oliveira et al., 2004</td>
<td></td>
</tr>
<tr>
<td>5-O-α-D-(3-C-hydroxymethyl)lyxofuranosyl-β-D-(2-C-hydroxymethyl)arabinofuranose</td>
<td>The natural disaccharide inhibited histamine release evoked by both compound 48/80 and calcium ionophore A23187 in rat peritoneal mast cells indicating that mast cell stabilization is the major mechanism of action for its antiallergic activity.</td>
</tr>
<tr>
<td>Kwan et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Arecae semen</td>
<td>Extract was the most potent inhibitor of antigen-induced degranulation in RBL-2H3 mast cells. It inhibited DNP-BSA- and compound 48/80-induced degranulation in RBL-2H3 mast cells. It also inhibited the expression of TNF-α and the activation of mitogen activated protein kinase, ERK1/2, which is critical for the production of inflammatory-cytokines in mast cells, as indicated by the suppression of the activating phosphorylation of ERK1/2. Thus it may be useful for the treatment of various immediate and delayed allergic diseases.</td>
</tr>
<tr>
<td>Lee et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Rhododendron dauricum</td>
<td>Four new prenylated orcinol derivatives, daurichromenes A-D, along with two known compounds, confluentin and grifolin significantly inhibited compound 48/80-induced histamine release from rat peritoneal mast cells.</td>
</tr>
<tr>
<td>Iwata et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Cimicifuga racemosa</td>
<td>Extract showed inhibitory potential on the compound 48/80-induced histamine release from rat peritoneal mast cells. In addition, it inhibited the IL-4, IL-5 and TNF-α mRNA induction</td>
</tr>
<tr>
<td>Kim et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Isodon japonicus Hara (Labiatae)</td>
<td>by PMA and A23187 in human leukemia mast cells, HMC-1. Thus it has anti-allergic potential. Aqueous extract dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. It inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cell line (HMC-1) cells. In addition, the expression of TNF-α mRNA in HMC-1 cells was inhibited by extract. Thus it may be beneficial in the regulation of immediate-type allergic reaction.</td>
</tr>
<tr>
<td>Anthriscus sylvestris</td>
<td>Deoxypodophyllotoxin (Anthricin) isolated from plant inhibits cyclooxygenase-2 (COX-2) and COX-1-dependent phases of prostaglandin D2 (PGD2) generation in bone marrow-derived mast cells (BMMC) in a concentration-dependent manner. Thus this compound might provide a basis for novel anti-inflammatory drugs.</td>
</tr>
<tr>
<td>Indolin-2-one</td>
<td>The alkaloids indolin-2-one inhibits histamine release from the mast cell.</td>
</tr>
<tr>
<td>Plumbago zeylanica</td>
<td>70% ethanol extract of stem inhibits mast cell-dependent immediate allergic reactions, which is probably mediated by reducing the release of mediators such as histamine from mast cells via elevating intracellular cAMP level and weakening the inflammatory action of mediators.</td>
</tr>
<tr>
<td>Artemisia iwayomogi (Compositae)</td>
<td>Aqueous extract dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80. Moreover, it inhibited the secretion of interleukin (IL)-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cell line (HMC-1) cells. Thus it may be beneficial in the treatment of allergic diseases. Aller-7 inhibited histamine release from the mast cell induced by compound 48/80.</td>
</tr>
<tr>
<td>Aller-7, a botanical formulation of combination of extracts from Phyllanthus emblica, Terminalia chebula, Albizia lebbeck, Piper nigrum, Zingiber officinale and P. longum</td>
<td>The herbal water-extract and quercetin inhibited histamine release from chemically-and immunologically-induced cells.</td>
</tr>
<tr>
<td>Chamomile, saffron, anise, fennel, caraway, licorice, cardomom and black seed mixture.</td>
<td>Aqueous extract dose-dependently inhibited histamine release from rat peritoneal mast cells (RPMC) by compound 48/80. n-Butanol fraction from the anomalous fruits significantly reduced in vitro histamine release from rat peritoneal mast cells triggered by compound 48/80.</td>
</tr>
<tr>
<td>Gleditsia sinensis Lam.</td>
<td>Extract dose-dependently inhibited the histamine release induced by compound 48/80 from RPMCs.</td>
</tr>
<tr>
<td>Forsythia fructus</td>
<td>Aqueous extract dose-dependently inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80. The level of cAMP in human mast cell line (HMC-1) cells, when extract was added, significantly was increased, compared with that of normal control. Thus it will be beneficial in the treatment of immediate-type allergic reaction.</td>
</tr>
<tr>
<td>Euonymus alatus</td>
<td>70% Ethanolic extract had a dose dependent restraint-effect to release the histamine from rat peritoneal mast cells.</td>
</tr>
<tr>
<td>Mentha arvensis L. var. piperascens Malinv. (Labiatae)</td>
<td>Aqueous extract dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE.</td>
</tr>
<tr>
<td>Stachys riederi var.</td>
<td>Aqueous extract inhibited the histamine release induced by compound 48/80 from RPMCs.</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Effect Description</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>japonica Miq. (Labiatae)</td>
<td>Compound 48/80 in RPMC. The level of cAMP in human leukemia cell line, HMC-1, when extract was added, significantly increased compared with that of basal cells. Thus it may be beneficial in the treatment of immediate-type allergic reaction. Extract produced a concentration dependent inhibition of histamine release induced from mast cells.</td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>Dodutang, Korean traditional medicine. Dodutang significantly inhibited the histamine release from rat peritoneal mast cells activated by compound 48/80. In addition, it potently inhibited the secretion of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated human mast cells. Thus it may be beneficial in the treatment of acute and chronic allergic diseases.</td>
</tr>
<tr>
<td>Sanguisorba officinalis L. (Rosaceae)</td>
<td>Aqueous extract of root dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP (cAMP) in RPMC, when extract was added, transiently and significantly increased compared with that of basal cells. Thus it may be beneficial in the treatment of allergic diseases.</td>
</tr>
<tr>
<td>Mallotus philippensis</td>
<td>Two new phloroglucinol derivatives, mallotophilippen A (1) and B inhibited histamine release from rat peritoneal mast cells induced by Compound 48/80. Thus it have anti-inflammatory effects.</td>
</tr>
<tr>
<td>Vitex trifolia</td>
<td>Vitexicarpin isolated from n-hexane extract is able to block effects of histamine released from sensitized mast cells possibly by stabilizing the mast cells membrane function.</td>
</tr>
<tr>
<td>Rubus coreanus Miq. (Rosaceae)</td>
<td>Aqueous extract of fruits dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP (cAMP) in RPMC, when extract was added, significantly increased, compared with that of the normal control. Moreover, extract had a significant inhibitory effect on anti-DNP IgE-induced tumour necrosis factor-α production from RPMC. Thus it may possess antianaphylactic action.</td>
</tr>
<tr>
<td>Gleditsia sinensis</td>
<td>70% Ethanolic extract from the anomalous fruits significantly reduced histamine release from rat peritoneal mast cells triggered by compound 48/80.</td>
</tr>
<tr>
<td>Bupleurum falcatum</td>
<td>Saikosaponin-A, a triterpenoid glycoside isolated from extract possesses inhibitory activity on histamine release induced by A-23187 in rat mast cells.</td>
</tr>
<tr>
<td>Salvia plebeia R. Brown (Labiatae)</td>
<td>Aqueous extract dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP in RPMC, when extract was added, significantly increased compared with that of basal cells.</td>
</tr>
<tr>
<td>Acanthopanax senticosus</td>
<td>Stem extract inhibited histamine release from mast cells in a dose-dependent manner. Moreover, it had an inhibitory effect on anti-dinitrophenyl IgE-induced tumor necrosis factor-α (TNF-α) production from mast cells.</td>
</tr>
<tr>
<td>Magnolia obovata</td>
<td>Crude bark extract and magnolol and honokiol isolated from the methanol fraction inhibited compound 48/80-induced histamine release from mast cells in a concentration-dependent manner.</td>
</tr>
<tr>
<td>Acanthopanax senticosus</td>
<td>When root extract was given as pre-treatment, the histamine release from rat peritoneal mast cells induced by compound 48/80 was reduced in a dose-dependent manner.</td>
</tr>
<tr>
<td>Bidens parviflora WILLD.</td>
<td>Five new polyacetylene glucosides, bidensyneosides A1, A2, B, C, and 3-deoxybidensyneoside B, have been isolated from the air-dried whole plant, inhibited histamine release from rat mast cells stimulated by the antigen-antibody reaction.</td>
</tr>
<tr>
<td>Bacopa monnieri</td>
<td>The methanolic fraction inhibited histamine release from rat mast cells.</td>
</tr>
<tr>
<td>Angelica keiskei</td>
<td>Six chalcones isolated from the EtOAc extract of the dried roots,</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Activity</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>Chaenomeles sinensis</td>
<td>Xanthoangelol B, xanthoangelol C, and xanthoangelol E inhibited the compound 48/40-induced histamine release. 5-O-p-coumaroylquinic acid butyl ester isolated from 90% EtOH extract of fruits inhibited the compound 48/40-induced histamine release.</td>
</tr>
<tr>
<td>Gleditsia sinensis</td>
<td>Aqueous extract dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP in RPMC, when extract was added, transiently and significantly increased about fourfold compared with that of basal cells. Moreover, it had a significant inhibitory effect on anti-DNP IgE-induced tumor necrosis factor-α production from RPMC.</td>
</tr>
<tr>
<td>Vitex rotundifolia (L.) (Verbenaceae)</td>
<td>Aqueous extract of fruits dose-dependently inhibited the histamine release from the rat peritoneal mast cells (RPMC) by compound 48/80 or anti-DNP IgE. Moreover, it had a significant inhibitory effect on anti-DNP IgE-induced tumor necrosis factor-α production from RPMC.</td>
</tr>
<tr>
<td>Perilla frutescens (Labiateae)</td>
<td>Aqueous extract dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP in RPMC, when extract was added, transiently and significantly increased about 4-fold compared with that of basal cells.</td>
</tr>
<tr>
<td>Sinomenium acutum</td>
<td>Aqueous extract of stem dose-dependently inhibited histamine release from the rat peritoneal mast cells (RPMCs) activated by compound 48/80 or anti-DNP IgE.</td>
</tr>
<tr>
<td>Tephrosia purpurea Linn.</td>
<td>Ethanol extract showed a dose-dependent inhibition of rat mast cell degranulation induced by compound 48/80 and egg albumin.</td>
</tr>
<tr>
<td>Aglaia roxburghiana</td>
<td>Ethanolic extract of the leaves protected mast cell degranulation by compound 48/80.</td>
</tr>
<tr>
<td>Solanum nigrum Linn (Solanaceae)</td>
<td>Petroleum ether extract of berries protected mast cell degranulation by clonidine.</td>
</tr>
<tr>
<td>Nyctanthes arbortristis Linn (Oleaceae)</td>
<td>The petroleum ether extract of bark showed maximum protection against mast cell degranulation by clonidine.</td>
</tr>
<tr>
<td>Nyctanthes arbortristis Linn (Oleaceae)</td>
<td>The petroleum ether extract of leaves showed maximum protection against mast cell degranulation by clonidine. Aqueous extract, ethyl acetate extract and methanol extract significantly protect mast cell from degranulation challenged by clonidine.</td>
</tr>
<tr>
<td>Ficus bengalensis Linn (Moraceae)</td>
<td>Aqueous extract, ethyl acetate extract and methanol extract significantly protect mast cell from degranulation challenged by clonidine.</td>
</tr>
</tbody>
</table>

Conclusion:

In summary, the mast cell has emerged as a unique immune cell that could be activated by many non-immune processes and could participate in a variety of inflammatory diseases and various allergic conditions. Many plant extracts and isolated compounds showed promising mast cell degranulation effect, which is beneficial for the treatment of allergy and inflammatory diseases associated with mast cell. These plants can be a potential source of new lead compounds against mast cell degranulation and associated pathological condition.

Conflict of Interest statement

The authors declare no conflict of interest.

References:

